2017년 6월 7일 수요일

Description Logic

1. Description Logics
 : A family of knowledge representation formalisms
 - a subset of first order predicate logic (FOPL)
 - decidable: trade-off of expressivity against algorithmic complexity

 - Description logics restrict the predicate types that can be used
  1) Person(x): unary predicates denote class membership
  2) hasChild(x, y): binary predicates denote relations (roles) between instances

 - Defining ontologies with Description Logics
  1) describe classes (concepts) in terms of their necessary and sufficient attributes (roles)
   * A is a necessary attribute of C: If an object is an instance of C, then it has A
   * A is a sufficient attribute of C: If an object has A, then it is an instance of C

 - Description Logic Reasoning Tasks
  1) satisfaction: can this class have any instances?
  2) subsumption: is every instance of class A necessarily an instance of class B?
  3) classification: what classes is this object an instance of?

 https://en.wikipedia.org/wiki/Description_logic


2. Syntax
 - Concept Constructors

 Boolean class constructors ¬C, C ∩ D, C ∪ D  Child ∩ Happy
 => the class of things which are both children and happy
 Restrictions on role successors  ∀R.C, ∃R.C  ∀hasPet.Cat
 => the class of things all of whose pets are cats
    or, which only have pets that are cats
   ! includes those things which have no pets
 ∃hasPet.Cat
 => the class of things which have some pet that is a cat
    ! must have at least one pet
 Number restrictions (cardinality constraints) on roles  ≤n R, ≥n R, =n R  ≥2 originCountry
 => the class of things with more than one country of origin
 Nominal (singleton concepts)  {x}
 Universal class, top  Τ
 Contradiction, bottom  


 - Role Constructors

 Inverse roles  R-
 Transitive roles R+
 Role composition  R ° S


 - OWL and Description Logics
  1) Not every description logic supports all constructors
  2) More constructors = more expressive = higher complexity
  3) OWL DL is equivalent to the logic SHOIN(D)
  http://www.cs.man.ac.uk/~ezolin/dl/


 - Knowledge Bases
  1) TBox terminology: a set of axioms describing the structure of the domain (concepts, roles)
 Concept inclusion C ⊆ D
 Concept equivalence  C ≡ D
 Role inclusion  R ⊆ S
 Role equivalence  R ≡ S
 Role transitivity R+ ⊆ R


  2) ABox terminology: a set of axioms describing a concrete situation (instances)

 Concept instantiation  x:D
 Role instantiation <x, y>:R


3. Semantics
 - Description Logics and Predicate Logic
  1) Description Logics are a subset of first order Predicate Logic
  2) Every DL expression can be converted into an equivalent FOPL expression

 - Every concept C is translated to a formula ΦC(x)
  1) Boolean class constructors
   ¬ΦC(x) = Φ¬C(x)
   ΦC∩D(x) = ΦC(x) ∩ ΦD(x)
   ΦC∪D(x) = ΦC(x) ∪ ΦD(x)

  2) Restrictions
   Φ∀R.C(y) = ∀x.R(y,x) ⇒ ΦC(x)
   Φ∃R.C(y) = ∃x.R(y,x) ∧ ΦC(x)

  3) Concept inclusion
   C ⊆ D = ∀x.C(x) ⇒ ΦD(x)

  4) Concept equivalence
   C ≡ D  = ∀x.C(x) ⇔ ΦD(x)

 - Interpretation function : ext()

Syntax
Semantics
Notes
 ext(¬C) △\ext(C)  Complement
 ext(C ∩ D)  ext(C) ∩ ext(D)  Conjunction
 ext(C ∪ D)  ext(C) ∪ ext(D)  Disjunction
 ext(∀R.C)  {x| ∀y.<x,y> ∈ ext(R) ⇒ y ∈ ext(C)}  Universal
 ext(∃R.C)  {x| ∃y.<x,y> ∈ ext(R) ∧ y ∈ ext(C)}  Existential
 ≤n R  {x| #{y| <x,y> ∈ ext(R)} ≤ n }  Max Cardinality
 ≥n R  {x| #{y| <x,y> ∈ ext(R) ≥ n }  Min Cardinality
 =n R  {x| #{y| <x,y> ∈ ext(R) = n }  Cardinality
 ext(Τ)    Top
 ext(⊥)  Ø  Bottom

https://arxiv.org/pdf/1201.4089.pdf

댓글 없음:

댓글 쓰기